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Abstract 

Helicenes are the simply connected helicenic (geometrically non-planar) polyhexes. 
In this paper, we give some necessary and sufficient conditions for a helicene to have 
Kekul6 structures. For a helicene with h < 14, the necessary and sufficient conditions 
are simpler. By using the conditions, we give a construction method for all the concealed 
non-Kekul6an helicenes with h _< 13, and rigorously prove that there are exactly one, 
seventeen, and two hundred and sixty-nine concealed non-Kekul6an helicenes with 
h = 11, 12, 13, respectively. 

1. Introduction 

A polyhex is a geometrical system consisting of congruent regular hexagons. 
Only the simply connected systems, that is, with no hole, are considered here. The 
simply connected polyhexes are divided into the (geometrically planar) benzenoids 
and (nonplanar) helicenic systems, for short referred to as helicenes. A helicene is 
a polyhex with overlapping edges if drawn in a plane (see fig. 1). However, it is 
not allowed that a vertex in a helicene has degree greater than three, or that two 
hexagons with a common edge overlap if drawn in a plane (see fig. 2). Under these 
restrictions, it is easy to see that three end points of any two incident edges 
in the dualist of a helicene form one of the three configurations: (a) a straight line, 
(b) an angle of 120 °, (c) an equilateral triangle (see fig. 1). 

Helicenes as chemical compounds have attracted much interest among organic 
and physical chemists, since the synthesis of the first such hydrocarbon, C26H16, 
hexahelicene or helicene with six hexagons [1,2] (see fig. 1 (1)). Later, many unbranched 
helicenes as homologues to hexahelicene have been synthesized, actually up to 
helicene with fourteen hexagons [3]. A branched C42H24 helicene (see fig. 1(2)), 
which is also known chemically [4,5], is a fully benzenoid hydrocarbon [6]. On the 
other hand, graph-theoretical properties and the enumeration of helicenes have been 
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studied extensively by mathematical chemists. For example, Randi6 et al. [7,8] 
investigated the aromatic stability and Kekul6 structure counts of helicenes; 
Hemdon [9], Dias [10], Cyvin et al. [11-15] gave some results on the enumeration 
of  helicenes. 

A Kekul6 structure of a polyhex G is a selection of independent edges of G 
which saturate all vertices of G. A polyhex is said to be Kekul6an if it has a Kekul6 
structure, otherwise non-Kekul6an. The existence of Kekul6 structures of  a simply 
connected polyhex is directly related to the chemical existence of the corresponding 
benzenoid or helicene molecule, so it is the first fundamental problem in topological 
theory of  polycyclic aromatic hydrocarbons. Many investigations have been made 
in order to find necessary and sufficient conditions for the existence of  Kekul6 
structures on a benzenoid system [16-21]. A recent survey [22] was given by 
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Zhang et al. However, for a helicene the problem of the existence of Kekul6 structures 
has not been considered so far. In the present paper, we shall give a complete 
answer to the problem. 

A polyhex is a bipartite graph, so it has a bipartition (VI, I"2) of vertices, 
where each of V1 and V 2 is an independent vertex set, coloured white and black, 
respectively. It is obvious that a Kekul6an polyhex must have the same number of 
white and black vertices, that is, the difference A of numbers of black and white 
vertices is equal to zero. At one time, it was even thought that a benzenoid system 
with A = 0 was certainly Kekul6an. However, two smallest non-KekulEan benzenoid 
systems with A = 0 were found by Gutman [23] in 1974. Later, a non-Kekul6an 
benzenoid system with A = 0 was said to be concealed non-KekulEan. Similarly, we 
can speak about a concealed non-KekulEan helicene or polyhex. Since 1974, many 
scientists [23-27] have been interested in hunting for concealed non-Kekul6an 
benzenoid systems, and in 1986, the eight smallest concealed non-KekulEan benzenoid 
systems with h = 11 had been found. In 1987, by computer-aided generation, 
Brunvoll et al. [28] asserted that there are exactly eight smallest concealed non- 
KekulEan benzenoid systems with h = 11, as had been found. In addition, by computer 
generation, He Wenchen et al. [29] found all the ninety-eight concealed non-Kekul6an 
benzenoid systems with h = 12. Quite differently, by using the necessary and sufficient 
conditions for the existence of Kekul6 structures in a benzenoid system, the present 
authors [21,30] gave a graph-theoretical construction method for concealed non- 
Kekul6an benzenoid systems with h < 13 which does not depend on computer-aided 
generation. By this construction method, we rigorously proved the above results of 
computer-aided generation, and also proved for the first time that there are exactly 
1097 concealed non-Kekul6an benzenoid systems with h = 13. Independently, Jiang 
and Chen [31] also found the numbers for h = 12 and 13, by an analytical deduction 
which is different from our method, and claimed the number for h = 14 to be 9781 
without rigorous graph-theoretical proofs. However, their result of 9781 systems 
appears to deviate from the recent (so far unconfirmed) computer-generated number, 
viz. 9804, which was obtained by Cyvin et al. [32]. Quite recently, a rigorous graph- 
theoretical proof of the number for h = 14 has been completed by Guo Xiaofeng [33]. 
It is confirmed that the number is surely 9804, the same as the computer-generated 
number. On the other hand, for concealed non-KekulEan helicenes, the parallel problem 
has not been widely studied up to now, although in 1982 Balaban [25] first found 
a concealed non-Kekul6an helicene with h = 11. In the present paper, based on our 
necessary and sufficient conditions for the existence of Kekul6 structures in a helicene, 
we prove that the smallest concealed non-Kekul6an helicene has exactly 11 hexagons; 
furthermore, we give a construction method for concealed non-Kekul6an helicenes 
with 11 <h  < 13. By using the construction method, we first find and rigorously 
prove the numbers of all concealed non-Kekul6an helicenes with h = 11, 12, 13, 
which are 1, 17, 269, respectively. For h = 14, an improved construction method is 
going to be given by Guo Xiaofeng in ref. [33], in which all the concealed non- 
KekulEan helicenes with h = 14 are also given. 
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2. Some related results 

Let H be a simply connected polyhex (a benzenoid or a helicenic system) 
drawn in a plane such that a pair of edges of every hexagon is parallel to the vertical 
line. A peak (valley) of H is a vertex in H which lies above (below) all its adjacent 
vertices. We denote the number of peaks and valleys of H by p(H)  and v(H),  
respectively. For convenience, we colour the vertices of H black and white so that 
any two adjacent vertices have different colours, and the peaks of H are by convention 
coloured black. Let nb and nw be the numbers of black and white vertices, respectively. 
Then A = nb -- nw = p ( H ) -  v(H). 

In a drawing of H, a broken line segment C = Pl P2P3 (possibly, P2 = P3) is 
called a horizontal g-cut segment of H if: 

(1) PiP2 is horizontal, 

(2) each of Pl,P3 is the center of an edge lying on the boundary of H; and if 
P2 ~ P3, P2 is the center of a hexagon of H, 

(3) every point of C is either an interior or a boundary point of some hexagon 
of H, 

(4) if P2 ¢:P3, the angle Pl P2P3 is 7r/3. 

Let C =Pl  P2P3 be a horizontal g-cut segment of H, and let C12 and C23 
denote the sets of the edges of H intersected by straight line segments C12 = Pl P2 
and C13 = P2 P3, respectively. Let C= 6"12 u 6"23. C is called a horizontal g-cut of H. 
Clearly, H -  C has exactly two components, in which the component containing the 
white (black) end vertices of the edges in C12 is called the upper (lower) bank of 
C, denoted by U(C) and L(C), respectively (see fig. 3). Let X and Y denote the sets 

C'plP2P 3 U(C) L(C) 

Fig. 3. A horizontal g-cut C of a simply connected polyhex 
H, and the upper (U(C)) and lower (L(C)) bank of C. 

of the hexagons in U(C) and L(C), and let H[X] and H[Y] be the systems induced 
by X and Y, respectively. Let p(H/U(C)) (v(H/U(C)) denote the number of the peaks 
(valleys) of H that are in U(C). 
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In particular, if p2 = P3, 6"23 = O, then C is called a horizontal cut segment and 
C is called a horizontal cut of H (see fig. 4). 

C~PlP 2 u(c) L(C) 

Fig. 4. A horizontal cut C of H, and U(C) and L(C). 

For a benzenoid system, the following necessary conditions were given by 
Sachs [16]. 

THEOREM 2.1 [16] 

Let H be a Kekul6an benzenoid system. Then for each of the six possible 
positions of H: 

(1) p(H) = v(H),  

(2) p ( H / U ( C ) )  - v (H/U(C- ) )  <_ I CI, where C runs through all horizontal cuts. 

The above necessary conditions are not sufficient [17]. Some fairly simple 
necessary and sufficient conditions were given by Kostochka [18], and independently 
by Zhang Fuji and Chen Rongsi [19,20]. 

THEOREM 2.2 [19,20] 

Let H be a benzenoid system. Then H has a Kekul6 structure if and only if 
for each of the six possible positions of H: 

(1) p(H)  = v(H),  

(2) p(H/U(C)) - v(H/U(C) <_ I C121, where C runs through all horizontal g-cuts 
of H. 

From theorems 2.1 and 2.2, we have that there exist some concealed non- 
Kekul6an benzenoid systems which satisfy the conditions of theorem 2.1 but not (2) 
of theorem 2.2. We call them the concealed non-Kekul6an benzenoid systems of 
type I. The smallest concealed non-Kekul6an benzenoid system of type I was first 
found by the present authors [21] (see fig. 5). 
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Fig. 5. 

THEOREM 2.3 [21] 

Let H be a smallest concealed non-Kekuldan benzenoid system of  type I. 
Then, 

(1) h = 14, 

(2) H is unique, as shown in fig. 5. 

Combining theorems 2.1, 2.2 and 2.3, we naturally have the following theorem. 

THEOREM 2.4 [21] 

Let H be a benzenoid system with h < 14. Then H has a Kekul6 structure if 
and only if for each of six possible positions and every horizontal cut C of  H: 

(1) p ( n )  = v ( n ) ,  

(2) p(H/U(C)) - v(H/U(C)) -<ICI. 

As stated above, a smallest concealed non-Kekuldan benzenoid system has 
eleven hexagons. It implies the following theorem, which was rigorously proved by 
the present authors [21,22]. 

THEOREM 2.5 [21,22] 

Let H be a benzenoid system with h < 11. Then H has a Kekuld structure if 
and only if p ( H ) =  v(H). 

In ref. [30], Guo and Zhang further gave the following theorems. 

THEOREM 2.6 [30] 

Let H be a concealed non-Kekuldan benzenoid system with h < 14. Then 
there is a horizontal cut C in H such that 

(1) p(H/U(C)) - o(H/U(C)) > I CI, 

(2) I CI = 2. 
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A concealed non-KekulEan benzenoid system H is said to be reducible if  it 
possesses a hexagon with four vertices of degree two in H, otherwise irreducible. 
The set of  reducible (irreducible) concealed non-Kekul6an benzenoid systems with 
h hexagons is denoted by Nh (9~h). 

By theorem 2.6, for a benzenoid system H in f (h ,  h < 14, there is a horizontal 
cut C such that I Cl = 2 and p(H/U(C)) - v(H/U(C)) > I Cl + 1 = 3. Let s* be the 
unique hexagon of  H not in X u Y, and let H[X ~ {s*}] and H[Y u {s*}] denote the 
benzenoid systems in H induced by X u {s*} and Y u {s*}, respectively. 

THEOREM 2.7 [30] 

Let H ~ ~ h ,  h < 14, and let C be a horizontal cut of H which satisfies that 
(1) I Cl = 2, (2) p(H/U(C))  - v(H/U(C)) > 3. Then, n [ x  w {s*}] (H[Y u {s*}]) must 
be isomorphic to one of  the benzenoid systems, as shown in fig. 6. 

Based on the above theorems, a construction method [30] for concealed non- 
Kekul6an benzenoid systems with h < 14 was given by the present authors. 

3. The existence of Kekul6 structures in a helicene 

From the proofs of  the above theorems 2.1 and 2.2, it is not difficult to see 
that the proofs are still valid for helicenes. Hence, we can give the following 
theorems immediately. 

THEOREM 3.1 

Let H be a Kekul6an helicene. Then, for each of  the six possible positions 
of  H: 

(1) p ( n )  = v ( n ) ,  

(2) p(H/U(C))  - v(H/U(C)) -<ICI, where C runs through all horizontal cuts of  H. 

THEOREM 3.2 

Let H be a helicene. Then H has a Kekul6 structure if and only if for each 
of  the six possible positions of  H:  

(1) p ( n )  = v ( n ) ,  

(2) p ( H / U ( C ) ) -  v(H/U(C)) < I CI, where C runs through all horizontal g-cuts 
of  H. 

From theorems 3.1 and 3.2, we can similarly define a concealed non-Kekul6an 
helicene of  type I which satisfies the conditions of  theorem 3.1, but not (2) of  
theorem 3.2. 
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THEOREM 3.3 

Let H be a smallest concealed non-Kekul6an helicene of  type I. Then H has 
exactly fifteen hexagons. 

Proof  

From the proof  od theorem 2.3, we can see that h > 14. On the other hand, 
we can construct such a helicene with h = 15 as shown in fig. 7, implying h < 15. 
So we have h = 15. [] 

Fig. 7. 

The following theorem is a natural corollary of  theorems 3.1, 3.2 amd 3.3. 

THEOREM 3.4 

Let H be a helicene with h < 15. Then H has a Kekul6 structure if and only 
if  for each of  the six possible positions and every horizontal cut C of  H:  

(1) p(H)  = v(H),  

(2) p(H/U(C))  - v(H/U(C)) -<ICI. 

THEOREM 3.5 

Let H be a helicene with h < 11. Then H has a Kekul6 structure if and only 
if  p(H)  = v ( n ) .  

Proof  

The necessity is obvious. We need only prove the sufficiency. Suppose that 
p(H)  = v(H),  but H has no Kekul6 structure. By theorem 3.4, there is a horizontal 
cut C such that p(H/U(C)) - v(H/U(63) > I CI >-- 2. 

On the other hand, since h < 11, one of  U(C) and L(C), say U(C), contains 
at most four hexagons. So p(H[X]) - v(H[X]) < 1. 

If  p(H[X]) - t~(H[X]) < 0, then p(H/U(C))  - v(H/U(C))  < p(H[X]) - v(H[X]) 

+ I CI - I CI, a contradiction. 
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I f p ( H [ X ] )  - t~(H[X]) = 1 ,3  < h < 4 and H[X] is as shown in fig. 8. Then we 
also have that p ( H / U ( C ) )  - v ( H / U ( C ) )  < p ( H [ X ] )  - v ( H [ X] )  +ICI  - 1 ---16.1, again 
a contradiction. [] 

Fig. 8. 

4. Enumeration of  concealed non-Kekul6an helicenes with h < 13 

Let H be a concealed non-Kekul6an helicene; H is said to be h-reducible if 
there is a hexagon s in H such that the system obtained from H by deleting s, 
denoted by H - s ,  is still a helicene (not necessarily concealed non-Kekul6an); H 
is said to be c-reducible if there is a hexagon s with four vertices of  degree two 
in H (clearly, H - s  is still concealed non-Kekul6an); the removable hexagon s is 
said to be an h-reducible hexagon or a c-reducible hexagon of  H, respectively. In 
the other cases, H is said to be h-irreducible or c-irreducible. 

If  s is an h-reducible or c-reducible hexagon of  H, let H '  = H -  s; then we 
also say that H is obtained from H '  by one addition operation, denoted by H = H '  + s, 
and the common edge of  H '  and s is called an attachable edge of  H ' .  In general, 
for a benzenoid or helicenic system H, an edge with two end vertices of  degree two 
in H is called an attachable edge of  H. Particularly, if  H is a benzenoid system and 
H + s is a helicene, then the common edge of  H and H + s is called an h-attachable 
edge of  H; if both H and H +  sl are benzenoid systems and ( H +  s l ) +  s2 is a 
helicene, where sl and s2 have a common edge, then the common edge of  H and 
H + sl is called a 2 -  h-attachable edge of  H. 

We denote by 5{h (5~Ch) the set of  c-reducible (c-irreducible) concealed non- 
Kekul6ans with h hexagons. 

By theorem 3.4, we can establish a construction method for all c-irreducible 
helicenes in 5(C h, h < 14. Theorem 3.5 means that a smallest concealed non-Kekul6an 
helicene possesses at least eleven hexagons. So we need only to consider the cases 
for 11 < h < 14. Furthermore, all c-reducible helicenes in Hh, h < 14, can be recursively 
obtained from systems in ~.h - i and 5t" h _ i, i > 1, h - i > 1 I. In the present paper, 
we will first give f(h u Y/'h, for h = 11, 12, 13. 

THEOREM 4.1 

Let H ~ 5~ h , h < 13. Then there is a horizontal CUt C, for position o f  some 
H, such that (1) 16"1-- 2, (2) p ( n / u ( c ) )  - v ( H / U ( C ) )  > 16"1 + 1 = 3. 

The proof  of  the theorem is similar to that o f  theorem 2 in ref. [30]. 
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THEOREM 4.2 

Let H ~ 5~h, h < 13, and let C be a horizontal cut Of H which satisfies that 
(1) I CI = 2, (2) p(H/U(C)) - v(H/U(C)) > 3. Let s* be the unique hexagon of  H not 
in X u Y. Then H[Xu {s*}] (also H[Yu  {s*}]) must be isomorphic to one of  the 
benzenoid and helicenic systems, as shown in fig. 6 and fig. 9. 

F 1 F 2 F 3 

Fig. 9. 

Proof 

If H[X u {s*}] is not a helicene, then it must be isomorphic to one of  the 
benzenoid systems in fig. 6, by the proof of  lemma 8 in ref. [30]. In the other cases, 
H[X u {s*}] is a helicene. 

Sincep(H/U(C)) - v(H/U(C)) >lCI + 1 = 3,p(H[X u {s*}]) - v(n[x w {s*}]) 
=p(H/U(C))-v(H/U(C))-(ICI-1)_>2. So I X I > 5 ,  IYI_>5. On the other hand, 
h < 1 3 ,  so I X I < 7 ,  IYI_<7, and 6<__ lXu{s*} l<8 .  Then p (H[Xu{s*} ] ) -  
v(H[X u {s*}]) = 2, thereby the dualist D(H[X u {s*}]) of  H[X u {s*}] contains 
two triangles pointing downwards. 

It is easy to see that an h-irreducible helicene must be a cata-helicene, so a 
smallest h-irreducible subhelicene of  H[X u {s*} ] has at most six hexagons, and it 
can only be the helicene as shown in fig. 10 [19]. Note tha tH ~ ~ ,  so D(H[X u {s*}]) 
has at most one vertex of  degree one, and if it has exactly one vertex of  degree one, 
the vertex must correspond to s*. It is not difficult to verify that H[X u {s*}] must 
be isomorphic to one of  the three helicenes in fig. 9. []  

Fig. 10. 

Now we are in a position to enumerate all helicences in 9~ h u Hh, for h < 13. 
For convenience, we define some notations. 
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:1 

B(II,I) B(II,2) B(II,3) B(II,4) 

B(II,5) B (11,6) B(II,7) B(II,8) 

Fig. 11. 

Let B ( l l ,  i), i = 1, 2 . . . . .  8, denote the eight benzenoid systems in 97(11 as 
shown in fig. 11, and let B(12 , j ) ,  j =  1 ,2  . . . . .  40, denote the forty benzenoid 
systems in N12 (see fig. 12). Let H(h, i), i = 1, 2 . . . . .  denote the helicenes in 
Hh. Let 5L/'h2(~C_h0 denote the set of  helicenes in M'h2, each of  which is obtained from 
a helicene in ~ch~ by h 2 - h  1 addition operations. Let Hh2(gr(h~) denote the set of  
helicenes in 5t/'h2, each of  which is obtained from a benzenoid system in f~h, by 
h 2 -  h 1 addition operations. 

For the systems in fig. 6 and fig. 9, le tA = {A 1, A 2, A3}, B = {B 1, B 2 . . . . .  Bs}, 
C = { C l ,  C 2 . . . . .  C6},  D = {D1, D 2 . . . . .  Ds}, E = {E 1, E 2 . . . . .  E29 }, and 
F = {F 1, F 2,/73}. L e t P ,  Q ~ {A, B, C, D, E, F},N" c P ,  N" c Q, and let f(h(N', N") 
c f /h ,  h < 13, be the set of  helicenes for which H c f-(h(N', N") if  H[X u {s*}] 
( H [ Y u  {s*}]) is i s o m o r p h i c  to one  sys tem in N '  (N").  In par t icu lar ,  for  
H',H" E A u B  u C u D  u E u F ,  we denote f{h ({H'}, N") = f(h (H', N"), f{h ({H'}, 
(H"}) = 5qc h (H',  H").  

THEOREM 4.3 

There is exactly one smallest concealed non-Kekul6an helicene with h = 11, 
as shown in fig. 13 (found by Balaban [25]). 

Proof 

Since h = 11, JX I = [ Y J = 5, and H[X u {s* } ] and H[Y u { s* } ] must be isomorphic 
to one of  A 1, A 2, A 3 in fig. 6, by theorem 4.2. Obviously, only one helicene as in 
fig. 13 can be obtained. [] 
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I IQ]  s 

J 
Fig, 12. 

Fig. 13. 
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THEOREM 4.4 

There are exactly seventeen concealed non-Kekul6an helicenes with h = 12. 

Proof 

For H E ~'12, by theorem 4.1, there is a horizontal cut C satisfying the 
conditions of  theorem 4.2, and IXI +lYI  = 11. So one of  IX I and I YI, say IxI, is 
equal to five, and I YI is equal to six. By theorem 4.3, H[X u {s*}] is isomorphic  
to one inA,  and H [ Y u  {s*}] is isomorphic to one in B u C. It is easy to verify that 
[ ~c12 [ = I 5712(A, B u C) l = 5, and the five helicenes in 5~12 are as shown in fig. 14. 

7 

11 (12, i) H (12,2) 

I I 1 ~  
H(12,3) 

Fig. 14. 

3 ~ 3 -t 

a o_ v _ - a T  . ~ a  

H(12,4) H(12,5) 

F o r  ~f12(~[11), we need only to consider the h-attachable edges of  every 
benzenoid system in 97(11. By counting the number  of  symmetrical  equivalence 
classes of  h-attachable edges of  each in f~11 and summing  the numbers,  we have 
that I 5~c12(f(11) I = 6. 

For ~12(ff~(11), the number  of  symmetrical  equivalence classes of  attachable 
edges of  the unique system in ff~11 is just  equal tO six, implying I H12(Sqc11)I -- 6. 

Now we have proved that IH12 U ff~¢'121- 17. []  

THEOREM 4.5 

There are exactly two hundred and sixty-nine concealed non-Kekul6an helicenes 
with h = 13. 

Proof 

For H e 5~c13, let C be a horizontal cut of  H satisfying the condit ions of  
theorem 4.2. B y theorem 4.2, either (1) I X I = I Y I = 6, and H IX u { s* } ] (H[Y u { s* } ]) 
is i somorphic  to one in B u C, or (2) IX I= 5, ]YI = 7, and H[X u {s*}] is isomorphic 
to one in A, and H[Y u {s*} ] is isomorphic to one in D u E u F. It is easy to verify 
that 

15~13(B, B) I = 0, 15qCl3(B, C)l = 15~13({B4, Bs}, {C5, C6})l = 3, 
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I NCl3(C, C) l 

= 129 (13(C3, C6) k..)  ¢'13(C4, (C5, C6} ) k.)  9 13(C5, (C5, C6} ) k.) 5i (13(C6, C6)1 = 6, 

5~c13(A, D) I = I YScla(A3, D) I = 5, 

Y1"13 (A, E) I 

= 15~13(A3, {Ei li = 2,3,8,12,14,15,16,18,19,20,21,22,25,26,29})1 = 15, 

5~c13(A, F) I = 15. 

Note that H13(A3, {D1, D2, D3, D4)) u ~c13(A, F3), 15~c13(A, D ) n  H13(A, F) I = 4, 
and any pair of the above sets other than H13(A, D) and 5(13(A, F)  are disjoint. So 
I Y~c131 = 44 - 4 = 40. 

For H13, we calculate IH13(5~12)1, I.q-/'13(9~12)1, IH13(~c11)1, IH13(Nll) I ,  
respectively. 

By counting the numbers of symmetrically equivalent attachable edges of 
every element in H12 and then summing them (see fig. 14), we have that 

I Y/'13(~c12)1 = 12+ 13+ 12+ 13+ 1 3 = 6 3 .  

For H13(9~12), we count the number of  symmetrical equivalence classes of 
h-attachable edges of B(12, i), i = 1, 2 . . . . .  40 (see fig. 12), and then take this sum, 
resulting in IH13(9~12)1 = 23. 

For H ~ 5t/'13(H11), H is constructed from H(11,1) by attaching a new hexagon 
Sl to an attachable edge of H(11, 1) and then s2 to an attachable edge of H(11, 1) + sl. 

We divide the helicenes constructed in this way as six subsets 7"1, T2 . . . . .  T6 
according to the symmetrical equivalence classes El, E2 . . . . .  E6 of attachable edges 
of H(11, 1) such that H E Ti if an edge in E i is attached by sl and any edge in 
E 1 L ) . . .  L) E i_ 1 is not attached by s2. So [ Y-/13(~¢:1) I = u~= 11T~I = 13 + 12 + 9 + 8 
+ 5 + 4 = 5 1 .  

For H E H13(9~11), H is constructed from B(11, i), i = 1, 2 . . . . .  8, by two 
addition operations. Let sl, s2 be the two attached hexagons. We consider the following 
t w o  ca se s .  

(1) sl and s2 have an edge in common. 

Then for every h-attachable edge of B(11, i), Sl and s2 can be attached to it 
in three ways. Counting the number of symmetrically equivalent h-attachable edges 
of every B(11, i) and taking three times their sum, we obtain eighteen helicenes in 
H13(9~11 ). For 2 -h -a t t a chab l e  edges of  B(11, i), we count the number of the 
numbers of symmetrical equivalence classes of them and then take the summation 
of  the numbers for every i, obtaining three helicenes in H13(NI1).  
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(1) sl and s2 have no common edge. 

We first consider the case that H is constructed from B(11,i) by attaching Sl 
to an h-attachable edge of B(11, i) and then attaching s2 to an h-attachable edge of 
B(11,i) + Sl which is not in sl. The helicenes constructed in this way can be divided 
into t subsets T1, T2 . . . . .  Tt according to the symmetrical equivalence classes 
E l ,  E 2 . . . . .  E t of h-attachable edges of B(11,i), for which H ~ Ti if an edge in Ei 
is attached by sl, and any edge in E 1 u . . .  u E i_  1 is not attached by s2. So from 
B(11,i),  i = 4, 6, 7, 8, eighteen, eight, nineteen, and ten helicenes in 5{13(NlI) can 
be obtained, respectively, resulting in fifty-five such helicenes (see fig. 15). 

6 7 

. kAAA'JLJ  ,[ I I I  I 7  
3 . . . .  z ~ i V v v v v ~ ' ~ 2 "  

Io 8 7 la 

Fig. 15. 

In the other case, H is constructed from B ( l l , i )  by attaching Sl and s2, 
respectively, to a pair of 2 - h-attachable edges of B(11, i) such that (B(11, i) + s]) + s2 
is a helicene. This gives six helicenes in 5{13(5~11). 

Now it follows that 15{13(f~11)1= 18+ 1 3 + 5 5 + 6 = 9 2 ,  15/ '131=63+23 
+ 51 + 92 = 229, and 15{13 u ffl31 = 229 + 40 = 269. 

5. Conclusion 

Hunting for concealed non-Kekul6an benzenoid systems has an interesting 
history, as described in a paper by Cyvin et al. [32]. Several authors participated 
in this "hunting". However, a graph-theoretical approach has been developed only 
in recent years [21,30], based on the necessary and sufficient conditions for the 
existence of Kekul6 structures in a benzenoid system. 

Since we have the basic theory already available, the process of  hunting for 
concealed non-Kekul6an helicenes is faster than the same process for benzenoids. 
In fact, this paper gives the numbers for h = 11, 12, 13, simultaneously. This perhaps 



F. Zhang, X. Guo, Kekuld structures in helicenes 309 

shows the power  o f  theoretical  considerat ions.  It would be interest ing to compare  
the numbers  obtained by analyt ical  methods  in the present  work to a result  obtained 
eventual ly  by computer  programming.  
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